Тензорное произведение — операция над линейными пространствами, а также над элементами (векторами, матрицами, операторами, тензорами и т.д.) перемножаемых пространств. Тензорное произведение линейных пространств и есть линейное пространство, обозначаемое . Для элементов… … Википедия
Тензорное поле — Тензорное поле это отображение, которое каждой точке рассматриваемого пространства ставит в соответствие тензор. Содержание 1 Определение 1.1 Опреде … Википедия
Тензорное расслоение — типа на дифференцируемом многообразии векторное расслоение над , ассоциированное с расслоением касательных реперов и имеющее в качестве стандартного слоя пространство тензоров типа на … Википедия
ТЕНЗОРНОЕ РАССЛОЕНИЕ — типа ( р, q )надифференцируемом многообразии М векторное расслоение Т p,q (М)над М, ассоциированное с расслоением касательных реперов и имеющее в качестве стандартного слоя пространство тензоров типа ( р, q )на в к ром группа действует при помощи … Математическая энциклопедия
ЯДЕРНОЕ ПРОСТРАНСТВО — локально выпуклое пространство, у к рого все линейные непрерывные отображения в каждое банахово пространство являются ядерными операторами. Понятие Я. п. возникло [1] при исследовании вопроса о том, для каких пространств справедливы аналоги… … Математическая энциклопедия
ГИЛЬБЕРТОВО ПРОСТРАНСТВО — векторное пространство Н над полем комплексных (или действительных) чисел вместе с комплексной (действительной) функцией ( х, у), определенной на и обладающей следующими свойствами. то существует такой элемент , что элемент хназ. пределом… … Математическая энциклопедия
РЕДУКТИВНОЕ ПРОСТРАНСТВО — такое однородное пространство G/Hсвязной группы Ли G, что в алгебре Ли группы G существует (H) инвариантное подпространство, дополнительное к подалгебре , являющейся алгеброй Ли группы H. Выполнение любого из следующих условий достаточно для того … Математическая энциклопедия
ВЕКТОРНОЕ ПРОСТРАНСТВО — линейное пространство, над полем К, аддитивно записанная абелева группа Е, в которой определено умножение элементов на скаляры, т. е. отображение удовлетворяющее следующим аксиомам Из аксиом 1) 4) вытекают следующие важные свойства векторного… … Математическая энциклопедия
ТОПОЛОГИЧЕСКОЕ ТЕНЗОРНОЕ ПРОИЗВЕДЕНИЕ — локально выпуклых пространств E1 и Е 2 локально выпуклое пространство, обладающее свойством универсальности по отношению к заданным на билинейным операторам с нек рым условием непрерывности. Точнее, пусть нек рый класс локально выпуклых… … Математическая энциклопедия
ВЕСОВОЕ ПРОСТРАНСТВО — конечномерное пространство , удовлетворяющее условию: если Ли алгебра над полем , а ее представление в V, то существует такая функция , что для любых при нек ром целом . Функция … Математическая энциклопедия